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Outline

Many approaches to small-x QCD

Towards the next to leading order BK equation

Running coupling effects on the Pomeron intercept ;

Sensitivity to infrared

The saturation momentum and geometric scaling

Running coupling vs. Pomeron loop effects
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TOWARDS THE NLO BK EQUATION
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Leading order
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Figure 1.8:Gluon emission from the dipole

Fig. 1.9. Now one can write the general solution for the totalcross section as

σ(r⊥, Y ) =
1

µ2

∫
dγ

2πi
σγ exp

[
ᾱsχ0(γ)Y + (1− γ) log

(
r2µ2

)]
, (1.33)

where the integration is to be performed along a contour in the complexγ-plane
with 0 < ℜ(γ) < 1. Hereµ is some energy scale associated with the target andσγ

is determined from the initial conditions.
When the energy becomes very large with the dipole size fixed,that is in the

limit ᾱsY ≫ |log (r2µ2)|, the cross section is dominated by the saddle point of the
eigenvalue, which occurs atγ = 1/2 as shown in Fig. 1.9. Then, up to prefactors,
the energy dependence of the cross section is

σ(Y ) ≈ exp(ωP Y ), (1.34)

whereωP = 4ᾱs log 2 is the so-calledhard pomeron intercept. Such a growth is
not surprising, and it represents the high gluonic components in the wavefunction
of the target, which in turn evolve at the same rate. The exponential (inY ) form
of this growth is due to the particular resummation of powersof ᾱsY that has been
performed and to the linearity of the evolution equation.

The solution to the BFKL equation at fixed impact parameter isalso known
[26], but it is a rather complicated expression so that it will not be presented at this
stage. One can find that the eigenvalues of the kernel are again the ones in (1.32)
and the high energy behavior of the scattering amplitudeN (Y, r⊥, b⊥) is the same
as the one of the total cross section in (1.34). Obviously this is a severe violation of
the unitarity bound for theS-matrix at a given impact parameter†, which states that
|S(b⊥)| ≤ 1. One should not expect this issue to be resolved by calculating higher
order corrections, which will simply change the value of theinterceptωP .

The second problem of the BFKL dynamics is that ofdiffusion. For all our pre-
vious discussions to be valid, it is important that the dipole size be small enough
to justify the use of perturbation theory. This dipole size sets the scale in the run-
ning of the coupling and therefore one needsr⊥ ≪ 1/Λ. However, even if we

†The total cross section violates the Froissart-Martin bound [27] σtot ≤ (π/m2
π) log2 s, where

mπ is the mass of the lowest QCD bound state, the pion. However, this is a different issue and
one does not expect to satisfy this bound without taking intoaccount the large distance behavior of
QCD.

Probability for soft gluon emission in the dipole wavefunction

dP =
ᾱ

2π
(x− y)2

(x− z)2(z − y)2︸ ︷︷ ︸
Mxyz

d2zdY

Soft gluon→ Quark-Antiquark pair

Either daughter dipole can scatter off target hadron

dSxy

dY
=

ᾱ

2π

∫
d2zMxyz (SxzSzy − Sxy)
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Argument of coupling?

Do not know scale in argument of coupling constant

Non-local (in transverse space) evolution in contrast to DGLAP

Expand running coupling to see what we need

α(Q2) = αµ − α2
µ β ln

Q2

µ2
+ α3

µ β
2 ln2 Q

2

µ2
− . . .

One quark-loop ᾱµ × (αµNf )×∆Y

Two quark-loops ᾱµ × (αµNf )2 ×∆Y

Sum (αµNf )k for all k, then let −2Nf → 11Nc − 2Nf = 12πβ

Recover scale in coupling argument
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Quark loop

Two classes of diagrams to order ᾱαNf

First type diagrams: typical running coupling correction

Two contiguous dipoles (x, z) and (z,y)

Expect just a kernel modification to LO equation

Second type diagrams: different wavefunction component ;

NLO equation: more complicate structure (plus double integration)

Running coupling: two contiguous dipoles
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Simple diagrams: running coupling

Loop integration over k2: UV divergent

Dimensional regularization 1/ε→ lnµ2

Integrate all longitudinal momenta of loop quark and antiquark
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New channel diagrams

When pair shrinks to a point ;

Size→ 0, loop momentum→∞ : UV divergent

Contributes to running of coupling
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Isolate running

⎡⎢⎢⎢⎢⎢⎣ −

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

UV-finite
new channel

+

︸ ︷︷ ︸
UV-divergent

coupling

Add and subtract∞ to isolate running

Choose “point” as linear combination of q and q̄ positions

Not unique way (Balitsky vs Kovchegov-Weigert)

Full NLO equation: Unique, but not closed

Running coupling part: Closed equation, but not unique
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NLO equation

Next to leading order equation (Balitsky “scheme”):

dSxy

dY
=
ᾱµ
2π

∫
d2zMxyz

[
1 +

αµNf

6π
ln

e−5/3

(x− y)2µ2
+ ...

]
(SxzSzy − Sxy)

+
ᾱµαµNf

N2
c

∫
d2z1d2z2 [new state]

Main difference in Kovchegov-Weigert “scheme” amounts to

ln
1

(x− y)2µ2
→ ln

R2(r1, r2)
r2

1r
2
2µ

2

r1, r2: daughter dipole sizes
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Bubbles

Resum bubbles (contained in higher NnLO corrections)
How many resummations we need to do (still no P. loops)?

I BFKL equation→ Resum (ᾱY )n

I Non-linear terms↔ Resum target high density effects
I Bubbles to get running coupling
I Bad collinear behavior of NLO kernel→ Pole resummation
γ(ω = 1) = 0
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Characteristic function

0 1/2 1 γ

4log2

χ0(γ) 0 1 γ

ᾱs = 0.25
Nf = 3

χ0(γ)+ᾱsχ1(γ)

Act on (r2)1−γ (not an eigenfunction)

More than obvious instability (even more complicated)
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Argument of coupling

Balitsky: Scale in coupling argument set by parent dipole size

Running coupling equation:

dSxy

dY
=
ᾱ(r2)

2π

∫
z

{
Mxyz +

1
r2

1

[
α(r2

1)
α(r2

2)
− 1
]

+ 1↔ 2
}

(SxzSzy − Sxy)

Kovchegov-Weigert: Triumvirate of running couplings

ᾱ(r2
1)ᾱ(r2

2)
ᾱ(R2)
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IR cutoff

Fixed order α2
µ: large dipoles cutoff needed only in principle

All orders (resummed bubbles): not integrable singularity ;

“freeze” the coupling or put cutoff

check independence at the end

Dynamically generated saturation momentum Q2
s � Λ2

QCD ;

scale “effectively” setting the argument of the running coupling

will ensure cutoff independence

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 14 / 40



POMERON INTERCEPT AND IR SENSITIVITY

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 15 / 40



Pomeron Intercept (1/5)

Assumptions
I linear equation
I simplified evolution kernel
I particular running

What is fastest increase of amplitude?

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 16 / 40



Pomeron Intercept (2/5)

“Running coupling evolution equation”

∂T

∂Y
= α(ρ)

[
1 +

(
∂ρ +

1
2

)2
]
T with ρ = ln 1/r2Λ2

Can choose more general coefficients or form

Exact general solution for α = 1/ρ in terms of Airy function

T (ρ, Y ) =
∑
ω

exp
(
ωY − ρ

2

)
Ai
(
ωρ− 1
ω2/3

)
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Pomeron Intercept (3/5)

Cut infrared contribution r > r0 > 1/Λ ;

boundary condition T (ρ0) = 0

For given boundary, ω related to zeros of Airy function

ωn =
1
ρ0
− |ξn|
ρ

5/3
0

+ · · · = α(ρ0)− |ξn|α5/3(ρ0) + . . .

Solution becomes

T (ρ, Y ) =
∑
n

exp
(
ωnY − ρ− ρ0

2

)
Ai(−|ξn|+ ω1/3

n (ρ− ρ0))
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Pomeron Intercept (4/5)

Rightmost zero of Airy function at −|ξ1| = −2.33 ; Largest ω

ω1 = Pomeron intercept

In QCD: ωP = 4 ln 2 ᾱ

n = 1 solution dominates up ρ− ρ0 . [α(ρ0)Y ]2/3

n 6= 1 not very physical (oscillations)

Schrodinger equation: attractive linear potential ;

Solution in perturbative region strongly dependent on cutoff

Running coupling BFKL not self-consistent

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 19 / 40



Pomeron Intercept (5/5)

Assume something milder than “absorptive” boundary

“Freeze” the coupling

α(ρ) =


1/βρ for ρ� 1

O(1) for ρ = ρ0 ∼ O(1)

α0 < 1 for ρ = −∞

with α(ρ) monotonic

Diffusion to infrared:

For any given perturbative dipole ρ� ρ0, main contribution from

region where coupling is strongest: momenta ∼ Λ
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THE SATURATION MOMENTUM AND GEOMETRIC
SCALING
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Logarithmic plane

Low Density

ln s

lnk2

Sa
tu
ra
ti
on
 L
in
eHigh Density

Saturation line: transition from low to high density

T (r2 = 1/Q2
s(Y )) = const
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Saturation momentum (1/8)

Enough to analyze linear equations

Boundary conditions replace non-linear terms

Caution: b.c are Y -dependent

Expectation: Non-linear terms ∼ cutoff

Physics around Qs determined by momenta around Qs
Initially assume α→ α(Qs)

I Leading behavior of saturation momentum
I All schemes→ same answer
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Saturation momentum (2/8)

Linear running coupling equation

∂T

∂Y
=

1
βρs

χ(1 + ∂ρ)T

Find line ρs(Y ) along which T = const
I Change variable ρ→ z ≡ ρ− ρs(Y )
I Expand chi function around (yet unknown) γs

I Set derivative of amplitude w.r.t. Y equal to zero
I Set constant term and coefficient of ∂z equal to zero

Two equations determine
I Anomalous dimension γs

I Saturation momentum Q2
s(Y )
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Saturation momentum (3/8)

Leading Y -dependence of saturation momentum

Q2
s(Y ) = Λ2 exp

[√
2χ(γs)
β(1− γs) (Y + Y0)

]
with γs = 0.372

0 < γs < 1/2: between DGLAP and Pomeron intercept

Slower increase: coupling decreases along saturation line

Consequence of running coupling:

At high energies the same Qs for any hadron ;

no A1/3 enhancement for a nucleus
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Saturation momentum (4/8)

Preasymptotic terms are not negligible

Expand running coupling to 1st order around Qs

α(ρ) =
1
βρs
− z

βρ2
s

+ ...

Different evolution equation for different schemes
Can show scheme-independence of first correction

Choose “parent dipole scheme”

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 26 / 40



Saturation momentum (5/8)

Solve (approximately) 2nd order P.D.E. with Y -dependent b.c.

The saturation momentum

Q2
s(Y ) = Λ2 exp

[√
2χ(γs)
β(1− γs) Y −AY

1/6

]
Scattering amplitude

T (z, Y ) = Y 1/6 exp[−(1− γs)z]Ai
(
−|ξ1|+B

z + c

Y 1/6

)
Known constants A and B (contain −|ξ1|, χ′′s , ...)

D.N. Triantafyllopoulos (ECT*) Running coupling at small-x Copanello, July 2007 27 / 40



Saturation momentum (6/8)

Geometric scaling: Within a distance ∼ Y 1/6 (in log-units)

amplitude (total cross section) is function only of z = ln 1/r2Q2
s

T =
(
Q2
s

Q2

)1−γs
(

ln
Q2

Q2
s

+ c

)
Same expression as in fixed coupling case
Phenomenon appears for momenta higher than Qs

Diffusion radius Y 1/6: much smaller

Less sensitive to UV: easier to solve numerically

No way to get geometrical scaling from DGLAP
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Saturation momentum (7/8)

Full NLO calculation: more terms

Collinear resummation (DGLAP matching):

γ(ω) =
∫

dz zωPgg(z)⇒ γ(1) = 0

Topic by itself: see Gavin Salam, hep-ph/9910492

Cannot really calculate analytically at NLO:

Coupling along Qs decreases, NLO converges to running coupling

Estimate correction for λs ≡ d lnQ2
s/dY to be O(α) ∼ 30%
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Saturation momentum (8/8)

5 10 15 20 25
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All with running coupling
a. brown
b. green
c. blue
d. magenta
e. black

: L BFKL with
: L BFKL
: L BFKL + boundary
: L RG BFKL + boundary
: NL RG BFKL + boundary

Y0 =0

More or less what the fits give (GBW,IIM,...): λs ' 0.3
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RUNNING COUPLING VS. POMERON LOOP EFFECTS
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Logarithmic plane

DGLAP

B
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Y

ρ = log(Q2/μ2)

log(1/α2
s)

ωP
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Line-1

T = const
≈ O(1)

T = const
≈ O(α2

s)

T ↓

T ↑

0

Saturation
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Pathologies

Extreme sensitivity to ultraviolet: Contribution from momenta

ln(Q2/Q2
s) .

√
ᾱDsY ; Q2 . . . .

Reconstruct solution in two steps: violation of unitarity (!)

1 ≥ T ∼ 1
α2

TaTb and for Ta < α2 then Tb > 1

Absence of Pomeron splittings: Two ladders merge, but how could
we have them in the first place?

I Nucleus target (or even proton?) ; Many sources ; Many BFKL
pomerons: Initial condition

I Dynamics: Pomeron splittings ; Pomeron loops
Corrections to equations (not present in LO or NLO BK-JIMWLK)
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Two-boundary problem (1/2)

Initially assume fixed coupling

Solve BFKL with two absorptive boundaries (IR+UV)

∆ =
1

1− γs ln(1/α2) = separation of boundaries

Within ∆, amplitude drops from O(1) to O(α2)

Look for Y -independent BFKL solution[
χ

(
1 +

∂

∂z

)
− λs ∂

∂z

]
T = 0

Real combination satisfying boundary conditions (no saddle point)

T ∼ exp[−(1− γr) z] sin
πz

∆
, γi =

π

∆
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Two-boundary problem (2/2)

Real part γr uniquely fixed in terms of γi or ∆ or α

λs =
χ(γ)
1− γ with Im(λs) = 0

For large separation of boundaries ∆� 1⇔ α� 1

λs
ᾱ

=
χ(γs)
1− γs −

π2(1− γs)χ′′s
2 ln2 α2

Relative correction is 1/R2
eff with Reff = effective transverse space

True in general

Running coupling: let α→ α(Qs)
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Pomeron loops vs running (1/4)

One of the two effects dominates?

Or both are important?

Seek for numerical solutions

We do not have a theory

Construct a model on basic principles and include both effects

Different (but same shape) characteristic function

Compare pomeron loops + running vs. running
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Pomeron loops vs running (2/4)
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Pomeron loops vs running (3/4)
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Pomeron loops vs running (4/4)

Up to super high rapidities:

Pomeron loops + running coupling = running coupling

Highly non-trivial statement since (for same i.c.)

Pomeron loops at fixed coupling 6= BK-JIMWLK

We have used slightly asymmetric initial conditions

In practice they are: virtual photon - hadron
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Pomeron loops vs running: Explanation?

Compare the two corrections

Pomeron loops: δλs ∼ 1/ ln2 α ∼ 1/R2
eff

Reff ∼ two-boundary width

Running coupling: δλs ∼ α2/3 ∼ 1/Y 1/3 ∼ 1/R2
eff

Reff ∼ diffusion radius

First glance: it seems Pomeron loops are more important

Diffusion radius grows very slowly with running coupling

Not really enough “time” to become equal to two-boundary width

(Contrast to fixed coupling dynamics: diffusion radius ∼ √Y )
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